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Abstract. Transient neural activity pervades hippocampal electrophysiological

activity. During more quiescent states, brief ≈100 ms periods comprising large ≈150–

250 Hz oscillations known as sharp-wave ripples (SWR) which co-occur with ensemble

bursts of spiking activity, are regularly found in local field potentials recorded from

area CA1. SWRs and their concomitant neural activity are thought to be important

for memory consolidation, recall, and memory-guided decision making. Temporally-

selective manipulations of hippocampal neural activity upon online hippocampal SWR

detection have been used as causal evidence of the importance of SWR for mnemonic

process as evinced by behavioral and/or physiological changes. However, though

this approach is becoming more wide spread, the performance trade-offs involved in

building a SWR detection and disruption system have not been explored, limiting

the design and interpretation of SWR detection experiments. We present an open

source, plug-and-play, online ripple detection system with a detailed performance

characterization. Our system has been constructed to interface with an open source

software platform, Trodes, and two hardware acquisition platforms, Open Ephys and

SpikeGadgets. We show that our in vivo results — approximately 80% detection

latencies falling in between ≈20–66 ms with ≈2 ms closed-loop latencies while

maintaining <10 false detections per minute — are dependent upon both algorithmic

trade-offs and acquisition hardware. We discuss strategies to improve detection

accuracy and potential limitations of online ripple disruptions. By characterizing

this system in detail, we present a template for analyzing other closed-loop neural

detection and perturbation systems. Thus, we anticipate our modular, open source,

realtime system will facilitate a wide range of carefully-designed causal closed-loop

neuroscience experiments.
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1. Introduction

Historically, precisely-targeted lesion studies have been the gold standard to

establish causal relationships between neural regions and cognitive functions, for

example studies showing hippocampal involvement in recognition and Pavlovian

contextual fear memories [1, 2]. Modern tools such as opto- and chemo-genetics enable

these perturbations to have reversible effects and to be targeted to specific genetically-

specified target cells. However, many neural circuits are now understood to exhibit

distinct patterns of activity at different times which are hypothesized to serve specific

functions. Causal manipulations to illuminate these functions require the ability to

interact with the brain — detect and perturb neural activity — in closed loop. Often

times, these patterns are transient events of neural activity comprised of sub-second

“ensemble events”. In order to modulate information contained in these patterns, they

must be detected not only with high accuracy but also low latency.

Closed-loop systems for detecting and perturbing temporally-distinct patterns of

neural activity obligatorily combine both algorithmic (i.e., software) and computational

hardware components. There is often a naive assumption that accuracy can be

maximized and latency minimized via computational or hardware improvements.

However, in many regimes, it is possible that algorithmic trade-offs may be the primary

factors constraining detection latency and accuracy. Without a system-level analysis,

however, these trade-offs may remain poorly-understood and investigators lose the

opportunity to balance performance against potential side-effects of neuromodulation

such as seizures, tissue damage, or the induction long-term plasticity. There are

two primary challenges to system-level analyses. First, closed-source data acquisition

platforms limit the ability to understand or explore the full data processing pipeline.

Second, parameter explorations during on-going in vivo experiments are limited by the

finite nature of neural implants and animal cooperation.

We present an open-source system we developed to detect sharp-wave ripples

(SWRs) — brief periods of elevated ≈150-200 Hz oscillation in the local field

potential (LFP) which are prominent in area CA1 of the hippocampus — and trigger

perturbations of ongoing activity (e.g., silencing activity via optogenetic stimulation to

hippocampal area CA3 or electrical stimulation of the ventral hippocampal commissural

fibers). Such systems have recently been used to investigate the causal significance of

neural activity during SWRs in learning, consolidation, and working memory [3–7]. In

order to investigate our realtime system, we explored algorithmic parameter spaces by

employing a two-level strategy. First, we developed a simulation model of the system

allowing us to rapidly and efficiently prototype algorithms and evaluate performance.

Second, we built an apparatus to feed pre-recorded neural activity back into our data

acquisition system and ran pseudo-experiments with varied parameters. We applied

this strategy to both a synthetic “gold-standard” dataset and to data recorded in

vivo from hippocampal area CA1. After identifying key performance metrics, we

show how varying parameters affects system performance using an initial single-channel
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detection algorithm. We demonstrate how these performance trade-offs depend on both

algorithmic choices and system hardware. Finally, we show how enhancing the algorithm

to use multiple detection channels can improve system performance at a cost of only

minimally increasing processing load and latency.

2. Methods

2.1. Animal Use

For the in vivo portion of our study, one male Long Evans rat (Charles River

Laboratories) was implanted with a micro-drive array with independently adjustable

tetrodes (implant coordinates −3.66 mm AP and 2.4 mm ML relative to bregma).

Tetrodes were lowered into hippocampal CA1 over one week. Tetrode locations were

determined by characteristic LFP waveforms attributed to the target area in conjunction

with estimated tetrode depth. A skull screw was used as a ground while a tetrode left

within the corpus callosum picking up minimal neural activity was used as a digital

reference and subtracted away from all tetrodes. We let the rat explore an open field

with objects and hidden rewards prior to all recording sessions within a sleep box. All

experiments were approved by the Rice University Institutional Animal Care and Use

Committee’s guidelines and adhered to National Institute of Health guidelines.

2.2. System Framework

Our experimental system architecture, depicted in Figure 1, is a closed-loop system

beginning with data acquisition and ending with a digital pulse triggered upon realtime

SWR detection. This pulse may be used to trigger a ripple disruption mechanism (e.g.,

optogenetic fiber or biphasic current stimulator). Data is passed through a headstage to

an Open Ephys or SpikeGadgets data acquisition unit, which interfaces with a software

suite, Trodes, for which we developed a SWR detection module. Upon detection of a

SWR event, the module triggers a stimulation with a digital pulse via an Ethernet-

connected BeagleBone Black microcontroller.

2.2.1. Data Acquisition LFP data is collected through tetrodes which connect to a

headstage that digitizes the raw analog LFP signal via an onboard analog-to-digital

converter. This digitized signal is then transmitted to a computer for display and/or

further signal processing. As depicted in Figure 1, step 2, we used two different data

acquisition systems, the Open Ephys Acquisition Board and SpikeGadgets Main Control

Unit, to acquire the digitized signal at 30 kHz from Intan RHD2000 series headstages.

These systems differ in the protocol used to transmit data to the computer — the

SpikeGadgets Main Control Unit employs gigabit Ethernet, whereas the Open Ephys

Acquisition Board uses USB2.0. Note that the USB buffer size, is configurable and

affects round-trip latency. We found the lowest round-trip latency from 30 kHz data

collection to feedback from the BeagleBone Black to be when the number of USB blocks
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Figure 1: Closed-loop system architecture depicting LFP data acquisition, data transfer (blue

Ethernet cables and black USB cable), data processing, and stimulation. Process begins with

data acquisition and ends with selective stimulation based on sharp-wave ripple detection.

Figure adapted from Open Ephys.

to read was set to three. The two hardware systems evaluated are developed by two

organizations, Open Ephys (open-ephys.org) and SpikeGadgets (spikegadgets.com),

that promote custom interactions with neural data through a variety of open-source

software and tools enabling novel neuroscience experiments.
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2.2.2. Data Processing and Stimulation Trigger Trodes — a modular, open source,

cross platform software suite available from SpikeGadgets (spikegadgets.com/

software/trodes.html) for neural data acquisition and interaction and experimental

control — was used for data collection and signal processing. The software is written

in QT/C++ enabling various realtime applications. As depicted on the left side of

Figure 2, Trodes is a multi-threaded process with threads interfacing with the data

acquisition unit and sending data for realtime display and logging (Figure 1 step 3).

Incoming data from both the headstage and available auxiliary channels are sampled at

30 kHz with both acquisition units in this study and handled by the appropriate Data

Acquisition threads. The Stream Processor thread then sends filtered data as requested

by connected modules. This modular framework facilitates custom realtime applications

as various forms of data (wide-band electrical signals, spike data, animal position, etc.)

can be sent to the module processes using Trodes.

Trodes

Data
Acquisition

Stream
ProcessorRecord

Audio

Display

Trodes
Data
Interface

Stimulation
Handler

BeagleBone
Black

Ripple Detector

Ripple
DetectorRipple

DetectorRipple
Detector

MUA
Animal
Speed

UDP

Figure 2: Trodes and Ripple Detector processes (highlighted on the left and right,

respectively) with their various threads. Data transfer and processing threads of importance

in this study are bolded. Trodes process collects, logs, and transfers data as requested by

connected modules. The Ripple Detector module processes incoming data and triggers a

potential stimulation pulse upon event detection.

The SWR (or ripple) detection module, shown in Figure 1 step 4 and on the right

side of Figure 2, receives digitized signals (discussed in the subsection above) of specified

channels via UDP communication protocol from the Trodes Stream Processor thread.

The digitized signals are sent to the module after a 400 Hz low-pass filter (LFP band)

and decimation from 30 kHz to 3 kHz. The module process receives the data via

the Trodes Data Interface thread and passes it along to a central thread, Stimulation

Handler, which spawns off separate threads per channel utilized for ripple detection

(algorithm discussed in Detection Algorithms subsection). Once enough channels report

ripple detections within a certain time requirement (15 ms for our experiments) to the

Stimulation Handler, a separate thread initiates stimulation by communicating with
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a BeagleBone Black microcontroller over Ethernet. The microcontroller outputs a

3.3 Volt digital pulse for a user specified amount of time (100 microseconds in this

study) to trigger a disruption mechanism for closed-loop intervention. However, as this

paper evaluates the efficacy of the detection system, for our analysis we monitor the

timestamps at which the disruption pulse is triggered by feeding it into the auxiliary

digital inputs of the acquisition units as opposed to stimulation hardware.

2.3. Detection Algorithms

2.3.1. Canonical Ripple Detection Post-recording, ripple events were defined on

tetrodes that displayed characteristics of the CA1 area of the hippocampus. Specifically,

the recorded LFP in one of the channels of the selected tetrode (same one subject to

online detection for our realtime analysis) first had a digital reference subtracted away.

This signal was then LFP band filtered with a 400 Hz low-pass infinite impulse response

(IIR) filter (from Trodes). Afterwards the signal was decimated and ripple band filtered

(150–250 Hz) with a 25 tap finite impulse response (FIR) filter. Ripple band filtering

was done using a forward and a time-reversed path, resulting in a net zero group delay

(time shift from filtering). The instantaneous power of the ripple band filtered signal

was then calculated via a Hilbert Transform and further smoothened with a Gaussian

kernel with a 4 ms standard deviation. Ripple events were detected as times when

z-score of the smoothened power signal signal exceeded a threshold of 3 z-units for at

least 15 ms. The canonical ripple epochs were defined as the time points from which the

processed signal returned down to the mean before and after threshold crossings [8, 9].

In cases when multiple electrodes (typically channels on different tetrodes) are available

for ripple detection, a different canonical definition is required. Ripples were initially

defined using as above for each electrode. A canonical multichannel ripple was defined

as one which is simultaneously detected on each electrode (two in our analysis). The

multichannel ripple epoch is defined as the union of the detected single-channel ripple

epochs, i.e., the start of the earliest ripple detected and to end with bound of last

ripple detected. As such, we obtain a conservative ripple detection latency estimate

while covering the entire span of the time the LFP is in a high ripple band power state.

We reanalyzed our data with the canonical ripples being defined on different channels

and tetrodes with a 300 tap bandpass FIR filter allowing 1% “ripple” in the passband

with −30 dB suppression in the stopband but our results and subsequent conclusions

remained consistent.

2.3.2. Realtime Ripple Detection Like our canonical ripple detections, the realtime or

online detection algorithm is comprised of single channel and multichannel modalities.

The single channel case performs realtime reference subtraction from the LFP (filtered

in the same way as the offline case) and decimation from 30 kHz to 3 kHz as in

the canonical detection case. However, the difference between online and canonical

detections begins from ripple band filtering. The decimated signal is filtered to the
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ripple band with a 30 tap FIR filter. In order to perform a realtime instantaneous

power estimation and smoothing, the realtime algorithm computes the absolute value

of the ripple band filtered signal and further filters it by a 33 tap 50 Hz low-pass FIR

(instead of a Hilbert transform followed by Gaussian kernel smoothing). These filters

cause an intrinsic sample delay from the offline case (≈10.167 ms in our case). It is

worth noting that the number of filter taps as well as filter types were determined

by analyzing algorithmic delay and detection accuracy based on metrics described

in the Data Analysis subsection. To normalize detection thresholds in the realtime

case, the mean and standard deviation of the smoothed envelope are estimated over a

20 minute training period. In two ≈90 minute sleep box recording sessions, when we

sampled 20 minute time intervals at random (N=1000), the resulting mean and standard

deviation were within 5% of the values for the entire sessions. This length of time and

subsequent error in parameter estimation likely depends on the behavioral and/or sleep

state of the animal — in our experimental recordings, animals were contained in a sleep

box. realtime detections are then triggered when the envelope crosses a threshold defined

as α standard deviations above the mean (threshold = α∗σ+µ) or α z-units. Following

a detection, there is a 200 ms lockout period where we ignore any further threshold

crossings (i.e., to avoid stimulation artifacts). Additionally, we impose a hard limit on

the number of detections per second (set to three during the experiments in this work).

For multichannel detection, the single channel algorithm runs on separate threads per

electrode. A specified number of channels upon which ripples are being detected must

all be above threshold within 15 ms of each other in order to trigger a detection event.

In the multichannel case, the lockout is imposed following the multichannel detection

event. In order to precisely characterize our system, we additionally implemented an

offline simulator which carried out the same algorithmic steps in a sample-accurate way.

This allowed us to differentiate between algorithmic and hardware, communication,

and/or operating system delays.

2.4. Realtime Testing

2.4.1. Synthetic Prior to in vivo testing, we developed a synthetic “gold-standard”

dataset to validate efficacy of our algorithm and to determine baseline latency

quantifications. To replicate CA1 neural noise dynamics within the ripple frequency

bands (150–250 Hz), we generated a white noise process and then filtered it to the

ripple band. This signal was then adjusted to have the same standard deviation as

the ripple band filtered CA1 LFP recording. Ripple events were then injected into the

synthetic signal. Synthetic ripples were generated by multiplying a 200 Hz sinuosoid

with a Gaussian envelope. The envelope was chosen to have ≈100 ms standard deviation

length (average length of ripple events from our recordings), with a peak value equal

to the average maximum peak of ripples found within our recording. This process

generated a synthetic ripple event which was then added to the previously generated
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synthetic neural noise giving us a dataset of synthetic “gold-standard” ripples. The final

dataset used in our testing was 15 minutes long with 500 injected ripples.

The dataset was then converted to a .wav audio file and played through the realtime

system via custom PCB shorting all channels of the headstage to an auxiliary cable

input. This framework was used for testing the system with both Open Ephys and

SpikeGadgets data acquisition hardware. However, different headstages were used for

testing these two systems. A 32 channel headstage was used with the Open Ephys

hardware while a 128 channel headstage was used with the SpikeGadgets hardware.

Digital pulses corresponding to ripple detections, parameter values of the detection

algorithm, and wide-band synthetic data across all channels, were logged during each

data collection session. It is worth noting that different headstages have inescapable

intrinsic noise fluctuations during the recordings. Data was reanalyzed across different

channels and using different headstages at different points in time validating our results

and subsequent conclusions.

2.4.2. In vivo For in vivo testing of our system, a rat was placed inside a sleep box

and then tethered to the SpikeGadgets Main Control Unit via a SpikeGadgets HH128

headstage. Data was recorded through our detection module for ≈60-90 minutes in three

separate sessions in order to test two different modalities of our algorithm (discussed in

Detection Algorithms subsection) and for synthetic data generation. As in the synthetic

case, ripple detection pulses, parameter values of the detection algorithm, and wide-band

electrophysiological data across all channels, were logged during each data collection

session. Lastly, it is worth noting that prior to the recording sessions, the rat explored

an open field with novel objects and hidden rewards in order to increase the prevalence

of SWRs [10–14].

2.5. Data Analysis

We characterized system and algorithmic performance via a total of five different

metrics: true positive rate (TPR), false positive percentage, false positive/stimulation

rate (FPR), detection latency, and relative detection latency. All metrics, other than

false positive percentage, were evaluated on both synthetic and in vivo data. Metrics

for in vivo analyses were generated by first binning the an ≈80 minute dataset into

15 ms chunks followed by random sampling with replacement of these chunks until a

total of ≈80 minutes had been sampled. The metrics generated were then averaged

and this bootstrapping process was repeated 1000 times. Metrics for the synthetic data

analysis, however, were calculated over the entire dataset without any bootstrapping or

averaging. As we controlled the duration of the synthetic dataset as well as the number

of canonical ripples, a false positive percentage metric as opposed to rate was used to

characterize performance. Metrics used were calculated as follows:
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True positive percentage (%) =
Number of canonical events detected

Number of total canonical events sampled
∗ 100

False positive percentage (%) =
Number of false detections

Number of total detections
∗ 100

False stimulation rate (per min) =
Number of false detections

Number of total true negative samples ∗ min
sample

Detection latency (ms) = Ripple detection time − Canonical ripple onset time

Relative detection latency (%) =
Detection latency

Canonical ripple duration
∗ 100

In our evaluations of the realtime system, as well as simulated detections, we

ignore canonical ripples that had start times within 200 ms of the previous putative

ripple since 200 ms is the post disruption lockout period that we use (see Detection

Algorithms subsection). All analysis was done with custom Python scripts, a modified

version of the Nelpy package, and custom C++11 programs. Both analysis code

and figure data are publicly available at https://www.github.com/shayokdutta/

RippleDetectionAnalysis.

3. Results

For closed-loop experiments which seek to disrupt the neural activity that occurs

during or in response to SWR, there are three figures of merit: we want to maximize

true positive rate, minimize false positive rate and minimize latency. Why are these

important? In a closed-loop perturbation experiment, failure to detect a substantial

fraction of events will increase the likelihood that no effect of perturbation will

be detected. A high rate of false positive-induced perturbations will contaminate

experimental results and can potentially cause harm (i.e., seizures). Finally, for most

experiments detection latency is just as important as detection accuracy – perturbations

that do not perturb the desired patterns while they are going on will not have the

intended effect. Using synthetic and actual data, we demonstrate below that these

figures of merit are linked and describe their trade-offs for single and multichannel

ripple detection.

The SWR detection system we developed and analyzed runs as a module in Trodes

(Figure 1, 2). Two features in particular enabled our system analysis: First, as our

neural recording system digitizes neural recordings with appropriate anti-aliasing filters,

the recorded signal could be converted back to the original analog form modulo a
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constant scale factor. This enabled us to repeatedly replay identical data into the system

to test parameter settings. Second, access to the complete source code — not only of

our SWR detection module but also the underlying data acquisition system enabled us

to simulate each step of the data processing pipeline. Our module constructs a realtime

representation of ripple-band (150–250 Hz) power through a simple FIR filter followed

by taking the magnitude of the filtered signal and further smoothing through a low-pass

FIR filter (see Methods and Figure 2). Using statistics of the ripple-power signal learned

during an initial training period to normalize, it then detects SWR events as excursions

in estimated power over a defined threshold. Note that each of these processing steps

deterministically delays the neural signal in ways which depend on the parameters of

the algorithm. This work investigates the trade-offs associated with choosing these

parameters, particularly the value of the threshold.

We built a detailed simulation of our ripple detection module which carried out

the same sample-by-sample computations and produced identical values at each step as

the online system. We used synthetic and recorded hippocampal test data to evaluate

performance. Using these test data, our algorithm simulation enabled us to quantify

how variability in the ripple signal deterministically transformed into variability in

detection performance. In parallel, converting the test data back to analog form, we

fed them into the actual system and re-digitized the signals including the timestamp

of the generated ripple disruption pulse. By comparing the simulated and actual

timestamps of ripple detection we could quantify the statistics of the non-deterministic

contributors to performance which result from use of a general purpose computer for

signal processing. This process enabled us to broadly explore the parameter spaces

and extrapolate realtime system performance before actual closed-loop testing in vivo

(Figure 6).

3.1. Latency and Accuracy trade-offs with Synthetic Data

Variability is one of the greatest challenges in optimizing the detection of particular

signals in the brain. In particular, SWR events vary in amplitude, duration, precise

frequency content, etc., and while individual large exemplars are easy to identify, even

trained investigators have difficulty in determining the boundary between smaller SWR

events and spontaneous high frequency oscillations. Thus, in order to confirm the

validity of our realtime algorithm, we created a gold-standard synthetic ripple dataset.

This synthetic data was formed by adding 500 ripple events to 15 minutes of background

noise. While real ripple events vary in peak amplitude and duration, we used a constant

peak amplitude and duration for synthetic ripple events to eliminate the effect of this

variation on system performance. This allowed us to analyzed performance as a function

of peak amplitude.

Our in vivo recording sessions showed a high percentage of ripples with peaks

ranging from approximately 5 to 10 z-units in the normalized ripple band power signal.

As such, our “gold-standard” ripple library consisted of distinguishable ripples varying
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in peak size around this range relative to a constant level of background activity (see

Methods). Our module detected ripples both in simulation and via playback to our

hardware systems. The detection threshold in the algorithm is specified in terms of

z-units — standard deviations above the mean — of the estimated envelope of the

underlying synthetic ripple band noise. In the case of large ripples (e.g., Figures 3A and

3B), a detection threshold exists which results in detection of all synthetic ripples and

for which incorrect detections (false positives due to background noise) never occur. In

the example shown, ripples have a peak power of 10 z-units, and the threshold is set to

5 z-units. When actual events lie closer in power to the background activity, however,

it is clear that it will be impossible to select a threshold for which no true events are

missed and no false positives are accidentally detected. We quantified this effect by

sweeping detection threshold values in datasets generated to contain synthetic ripples

with different peak powers.

Across our synthetic datasets, the power of the background noise was held constant.

Thus, the false positive percentage depended only on the chosen threshold (Figure 3C).

In contrast, detection requires that events be larger than the threshold, yielding a surface

where for a given threshold detection accuracy is dependent on ripple amplitude or events

will be missed (Figure 3D). Both physiological ripples and our synthetic events have a

non-zero rise time. Hence, as the threshold rises, the latency — the delay from when the

ripple started (exceeded the mean of the background power) and when it is detected —

increases (Figure 3E). Our synthetic ripples were generated using a Gaussian envelope

which was scaled by peak power. The result is that larger ripples rise in power faster,

and thus are detected with lower latency for a given threshold. As a result, we see that

the detection threshold jointly affects latency and accuracy (true and false positive),

and thus the optimal setting will depend on the details of a particular experiment.

3.2. Realtime Detections with Synthetic Data

Our simulation revealed that choosing a particular value of threshold would yield

ripple detections with specific latency and accuracy trade-offs. However, these trade-

offs assume that signal processing occurs instantaneously. While some custom-hardware

ripple interruption implementations may approach this limit, the need for flexible design

has led many investigators to use general purpose computers to carry out computation.

In this scenario, communication with hardware and other operating system functions

leads to further delay between a ripple occurring and detection yielding a closed-loop

response.

In order to quantify these non-algorithmic effects on performance, we proceeded

to feed in synthetic data to our realtime system. After estimating a threshold of

5 z-units online by feeding in 2 minutes of background noise, we ran the 15 minute

synthetic ripples dataset with 500 injected ripples. As expected, realtime detections

of individual synthetic ripples were identical to our simulations, but with increased

latency (deviation from the unity-slope line, Figure 3F and 3G). We found that the
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Figure 3: (A, B) Example detections using SpikeGadgets and Open Ephys, respectively.

Canonical ripples are highlighted and both simulated and online detection times marked (black

and red arrows, respectively). (C–E) Performance characterizations with synthetic ripples of

varying amplitudes and simulated online detections with varying thresholds. (C) False

positive percentages reveal threshold at which synthetic ripples exceed baseline noise. (D)

True positives taper down with increasing threshold across ripple amplitudes. (E) Detection

latency heatmap shows general increase in latency with increasing threshold across ripple

amplitudes. (F, G) Simulated vs online detection latency scatter plots and distributions for

synthetic ripples sent through SpikeGadgets and Open Ephys hardware, respectively.(F)

Using SpikeGadgets, average latencies were 42.79 ms and 45.44 ms for simulated and online,

respectively, with 80% closed-loop latencies lying within 1.35 and 2.6 ms. (G) Using Open

Ephys, average detection latencies were 41.65 ms and 53.32 ms for simulated and online,

respectively, with 80% of closed-loop latencies lying within 7.5 and 13.8 ms.
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additional, realtime latency, was different for our two data acquisition systems (80%

of the closed-loop latencies were within 1.35–2.6 ms and 7.5–13.8 ms for SpikeGadgets

and OpenEphys, respectively). Given that the system pipeline is identical following

data acquisition, this suggests three things. First, in the case of the computations

required for ripple detection, time spent computing the algorithm is at most a few

milliseconds. Second, the specific interface protocol used for data acquisition, i.e.,

USB or Ethernet (Figure 1 step number 2), can significantly impact the closed-loop

latency. Lastly, this isolates that the majority of overall ripple detection latency lies

in the algorithmic implementation —filter-delay and the time it takes for the processed

signal to reach threshold — rather than in hardware or computational efficiency. The

synthetic analysis as a whole highlighted key performance characteristics of our detection

algorithm, validated the efficacy of our realtime system, and identified a speedup with

the Ethernet-based SpikeGadgets Main Control Unit — used exclusively for the in vivo

portion of our study.

3.3. In Vivo Single Channel Detection Analysis

Our investigation of system performance using synthetic data demonstrated that for

different amplitude ripples, there would be a trade-off between accuracy and latency.

Physiological ripples vary in intensity and duration and in vivo recordings can also

contain bursts of high-frequency noise induced by static discharge, animal behaviors such

as grooming, whisking, or chewing. How does this variability affect the performance of

a realtime ripple detection system? We began answering this question by applying our

system simulation to recorded in vivo data. We recorded neural activity from 10 tetrodes

implanted in area CA1 of the hippocampus during an ≈80 minute session in which a rat

rested in a small box. Unlike synthetic data, physiological ripples cannot be identified

perfectly. There is no universally agreed definition; we applied a canonical definition of

ripples as periods in which the power in the ripple band (150–250 Hz) was elevated above

the mean by 3 standard deviations for at least 15 ms. We defined the start and end of

each ripple epoch as the moment when the ripple-band power first exceeded and finally

returned to the mean (see Methods). As discussed previously, the detection threshold

in our realtime detection algorithm is also specified in terms of standard deviations of

the envelope of the ripple signal. For our in vivo parameter explorations, we used mean

and standard deviation parameters calculated over the entire 80 minute session.

As with synthetic data, while increasing the threshold parameter, we found that

true positives and false positives decreased with increasing threshold (Figures 4A–4B).

For real data, as we do not know the number of ground truth events, we calculate a

false positive or false stimulation rate to give us an informative characterization of how

long we are disrupting information propagation from the hippocampus over a period

of time. As expected, latency increased with increasing threshold (Figures 4C–4D).

Unlike in our synthetic dataset, not all real ripples are of constant length. As such, the

absolute detection latencies only partially characterize the performance of our detection
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Figure 4: Single channel in vivo ripple detection metrics. Mean and two standard errors of

data points (solid and shaded regions, respectively) are shown in (A–D) — generated using a

Monte Carlo sampling approach (see Methods). (A) True rate (TPR) decreases as threshold

increases. (B) False positive rate (FPR) decreases with increasing threshold. (C) Detection

latency increases with increasing threshold. (D) The relative detection latency, the fraction

of each event that has transpired prior to detection, also increases with increasing threshold.

Panels (E–G) show mean and two standard errors of data points. The dashed lines

represent standard errors on the y-axis while the shaded region represents standard errors in

the x-axis. (E) Receiver operating characteristic (ROC) curve shows true positive and false

positive percentage relationships. (F, G) False stimulations decrease with as detection

latency increases but true positives also decrease with increasing detection latency.

algorithm. In order to fully interpret these values, we incorporated a relative latency

metric — the percent of the ripple event that has transpired prior to detection (see

Methods).

We additionally visualized the pairwise trade-off curves relating true and false

positive rates and detection latency Figures 4E–4G). Unlike with our synthetic data,

the false stimulation metric is non-zero for all threshold values (Figure 4B) and there is

a larger range for which true and false positive rates trade off as shown in the receiver

operating characteristic (ROC) curve in Figure 4E.

Depending on the specifics of experimental design, one can imagine that extraneous

perturbations (i.e., false positives) or missed events (i.e., false negatives) might be more

detrimental. In many cases, however, investigators would want to pick a threshold value

associated with the “elbow” of the ROC (inset in Figure 4E) which is associated with

minimizing false positives while maximizing true positives. Our results indicate that
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given between 5–10 false positives detections per minute, greater than ≈97% of the

canonical ripple events can be detected. The threshold parameter space associated with

this region lies in between ≈3.5 and 4.25 z-units (Figures 4A and 4B).

Prior to selecting a parameter associated with the “elbow” of the ROC curve for

realtime testing, the corresponding latencies must also be considered. The latency values

associated with the 5 to 10 false detections per minute and the greater than ≈97% true

positive detections range fall in between ≈45–55 ms (Figures 4F and 4G). These latency

values further isolate the desired threshold range to fall within a similar range as the

true positive and false positive trade-offs (Figures 4A - 4C). We see in Figure 4D that

given these suggested performance metrics, choosing threshold values up to 4 or even

4.25 can lead to both sensitive and specific interaction with up to ≈60% of the ripple

event.

3.4. In Vivo Two Channel Detection Analysis

When we examined false positive detections in real data, we noted that a common

signature was a brief period of minimally-elevated ripple band power that did not meet

the duration criteria. The fact that physiological ripples propagate across CA1 has

previously inspired closed-loop ripple detection systems which require a ripple to be

detected on multiple electrodes [4, 15]. We implemented and evaluated an algorithm

that required that the realtime power estimate be above threshold on two selected

channels within 15 ms in order to trigger detection, referred to as the multichannel

or two channel algorithm. The canonical ripple definition was updated to use ripples

with temporal overlaps across multiple channels (see Methods). For comparison, we

analyzed both individual electrodes using the single channel algorithm, but with the

new multichannel canonical definition (Figure 5).
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Figure 5: Single channel and two channel in vivo ripple detection metrics. Note that two

channel detections provide more accurate detection results than single channel at lower

thresholds. Threshold/metric definitions and all plots display same metrics and same trends

as in Figure 4 but with a two channel comparison and ground truth ripples based on two

channel detections (see Methods).
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The more stringent requirement that a ripple be present on multiple channels results

in a more rapid decrease in the fraction of true positives detected compared with single

channel detection (in which the true multichannel ripple need only be detected on one

channel, Figure 5A). As expected, this decreased sensitivity comes with the benefit of

increased selectivity (Figure 5B). However, the two channel algorithm can be as sensitive

as the single channel algorithm at lower thresholds with lower FPRs. For example, a

threshold of 3.25 z-units with the two channel voting algorithm results in a higher TPR

than single channel detections with a threshold of 4.25 z-units while having comparable

average FPRs (insets, Figures 5A and 5B). This is further evinced in the ROC curve

which combines true and false positive metrics (Figure 5C).

Intuitively, we expect the two channel algorithm to have higher detection latencies

at similar thresholds as it waits for a second channel to detect a ripple prior to

triggering a detection pulse. We indeed find this (Figures 5D). Thus, the increased

accuracy of multichannel detection comes at the cost of increased latency. This,

and the fact that ripples (unlike theta oscillations) are not coherent across the whole

hippocampus, suggest that care should be taken in the development of multichannel

detection systems [15, 16]. As the numbers of channels is increased beyond two, our

module features a custom-voting algorithm, as opposed to unanimous voting, which

requires a user specified voting requirement of ripple detections prior to a stimulation

pulse output which may increase sensitivity to investigator preferences [4, 17].

3.5. In Vivo Realtime Detections
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Figure 6: (A) Example snippet of two channel in vivo ripple detections. Blue highlights

across all channels mark canonical ripple epochs. Dark blue colored traces in each channel

represent individual ripple detections per channel done offline. The red horizontal traces

represent realtime threshold of 3 z-units on both channels used for the detection. (B) Scatter

plot of detection latencies in between simulated detections (threshold crossing times) and

online detections. Average simulated and online detection latencies are 53.322 ms and

54.621 ms, respectively. Average and median latencies between threshold crossing time and

online detection time are 1.924 ms and 2 ms, respectively.
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After our offline and simulated analysis, we proceeded to implement the

multichannel algorithm in our realtime system. With a rat inside a sleep box for

approximately 60 minutes, we ran an in vivo two channel voting and detection session.

We then set the detection threshold to 3 z-units after estimating mean and standard

deviation parameters for 20 minutes (see Methods). According to the two channel

analysis, at this threshold we should be able to detect greater than 97% of all ripple

events and detection latencies in between 50–55 ms on average. Figure 6A shows a

snippet of the recorded LFP and realtime processed signals. Note the temporal lag

in the processed signals (see Methods). Two of the single channel ripple detections,

traced in dark blue, are not considered part of the canonical ripple epochs, vertically

highlighted across all channels. The online detections selectively ignore these events and

only detects the canonical ones as they cross threshold across both the channels used

for the detection within 15 ms (shown in the bottom realtime envelope traces). Lastly,

as we did while passing our synthetic data through the realtime setup, we examined

algorithmic performance in both simulated and online cases. Figure 6B shows the

distributions of both online and synthetic detections of the same ripple events during this

recording session. We are able to confirm that both our average online and simulated

detection latencies, 54.621 ms and 53.322 ms, respectively, fall within the range of our

synthetic analysis of this recording session with the given parameters. Additionally,

on average the closed-loop latency is ≈2 ms indicating that adding another channel

is not causing significant computational delay compared to single channel. This was

further confirmed by running the online detection algorithm with eight channels voting

for ripple detections on our synthetic dataset. We once again found a similar closed-loop

latency of approximately 2 ms on average (not shown).

4. Discussion

Within the last decade, electrical and optogenetic ripple disruption studies have

established a fundamental role for SWRs in the processes of learning and memory [4,

18–20]. However, performance characterizations of realtime SWR detection systems

have not been discussed. Here, we have introduced and evaluated an open source,

closed-loop, realtime system for SWR detection and potential intervention. Our study

began with generating a “gold-standard” synthetic ripple dataset, revealing subsets of

z-scores of ripple band power associated with underlying neural activity and SWRs. We

then proceeded to test our algorithm and system performance with the synthetic dataset

prior to in vivo testing which motivated further algorithmic improvements and isolated

particular pitfalls of our detection algorithm.

For preliminary evaluations of algorithmic performance, we generated a synthetic

ripple dataset as ground truth neural data is an underlying challenge in neuroscience.

Our online estimated power-threshold crossing algorithm showed that the algorithm

was valid in detecting synthetic ripples that were injected into our dataset. However,

as mentioned in the Methods section, the fabrication of the synthetic dataset involved
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modeling the underlying neural noise within the ripple band. Comparing z-scores of the

Hilbert Transform of this signal to the CA1 LFP revealed that the real data encapsulated

the modeled noise. We found that the CA1 z-scores that had a longer tail than the

modeled noise (z-scores of ≈5 and above) were associated with ripple events. As a

result, when we injected synthetic ripples into our dataset that had a larger power

within the ripple band than the surrounding noise, it was expected that our detection

algorithm would be able to selectively detect those events and would be valid criteria

for preliminary testing of the realtime system (Figure 3E).

Testing the realtime setup with a synthetic dataset also identified a closed-loop

latency speedup by using SpikeGadgets hardware over Open Ephys for data acquisition

(Figure 3F–3G). Our results revealed an added latency from simulated to online

detections due to computational time and hardware latency. We discovered the latter to

be the primary source of the closed-loop latency by demonstrating that adding another

thread for detections in our two channel detections (Figure 6B) from our single channel

detections (Figure 3F) did not increase the simulated to online detection time latency

(the gap from the y = x line). Additionally, we stated the 8 ms speedup by using

a SpikeGadgets acquisition unit over the Open Ephys acquisition unit was due to the

use of an Ethernet over USB communication protocol. Specifically, the USB protocol

involves putting data into packets and then sending those packets with a variable number

of blocks of data making up the packets. We varied the number of USB blocks, which

increased and decreased the latency, to further confirm that the use of this protocol was

the reason for the speedup offered by Open Ephys. The results we presented were found

by using the number of USB blocks that provided the lowest latency. It is worth noting

that the Open Ephys project is developing a platform for data transfer via PCI express

which will enable sub-millisecond closed-loop latency [22]. Lastly, to further confirm

that computational processing load was not the primary factor in the added closed-loop

latency, we tested our realtime system with 8 simultaneous channels detecting synthetic

ripples and confirmed that our closed-loop latencies using both systems provided results

consistent with single channel detections. This investigation and demonstration further

confirmed our claims about the closed-loop latency being a factor of hardware-software

interfacing rather than computational time. In general, we believe that using either data

acquisition unit will enable closed-loop ripple disruption experiments as added hardware

and computation latencies are <10% of calculated relative detection latency of ripples.

Moving from synthetic ripple detection to in vivo introduced increased false

detections due to ripple events sharing ripple band power z-scores with underlying

neural activity and noise events from rodent grooming or whisking. Real ripples, unlike

our model, do not always reach a value upon which they can be distinctly isolated

from other events. This makes the resultant false detections from a single channel

threshold crossing algorithm inevitable. In an attempt to lower false detection metrics,

we evaluated a multichannel detection algorithm founded on our understanding that

ripple events should permeate multiple tetrodes within CA1. Multichannel detections

resulted in a lower total number of ripple detections and higher selective detections
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based on our accuracy metrics than relying upon a single channel (Figure 5). However,

unfortunately, both ripple and noise events were coherent across tetrodes. Additionally,

events of ripple band power that exceeded threshold without meeting the temporal

requirements of our canonical ripples were also prevalent across tetrodes. Using two

channels for detections did lower the number of detections due to these neural dynamics

but it did not fully address the issue. The remaining challenge involves false detections

due to noise events.

As noise events saturate all tetrodes, a proposed solution to handle false detections

due to rodent grooming or static passed through to the data acquisition unit would be

to utilize a false detection tetrode located in a brain region picking up minimal activity.

This false detection channel would perform ripple detections as the previously discussed

detection channels but the digital output pulse from our realtime system would be

suppressed if this channel reports a detection a few milliseconds before or after (buffer

window) the other channel(s) report ripples [23]. Preliminary analysis of this paradigm

reveals that false detections due to noise events associated with the reference channel

as well as due to rodent grooming or other sources can indeed be suppressed without

drastically impacting the true positive rate. However, the trade-off of such an algorithm

comes with the extra buffering required after ripple detection. Investigators will have

to determine what sort of sensitivity is appropriate given the latency cost of the buffer

window.

The other source of false detections, neural dynamics within the LFP associated

with ripple band power exceeding thresholds, remains an open question to be solved.

Several examples can be found in all of our datasets where ripple band power exceeds

thresholds set and triggers our realtime detections but do not meet the 15 ms above

threshold temporal requirement of canonical ripples. From the perspective of neural

dynamics within the hippocampus, the general purpose of detecting ripples remains

to disrupt periods of high multiunit activity co-occurring with sequential reactivation

or replay. As such, without proper identification of replay during population bursts,

presenting an inherent challenge itself, it may not be truly accurate to call these events

false detections. While we have not discussed it here, our module includes the ability

to interface with a video tracking system and limit perturbation to periods in which

animal speed is below a threshold value.

Nevertheless, based on our definitions and data analysis metrics, it is possible to

algorithmically lower the number of false detections while maintaining high true positive

percentages. One of the differences between our online algorithm compared to the offline

canonical ripple definition is the temporal threshold requirement (i.e., above threshold

for at least 15 ms). The temporal requirement was dropped in the online algorithms

due to added detection latency for time spent after threshold crossing in addition to

the closed-loop latency associated with any realtime system. As previously discussed,

we found our relative detection latencies for both modalities of our algorithm to vary

between 35%–45% (Figures 4D) at thresholds of interest. Additionally, we found that

≈95% of ripples observed within our study last from ≈60–150 ms with a mean at
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≈100 ms. This indicates that every ms of above-threshold temporal requirement added

would increase relative detection latency by ≈1% of the ripple’s duration. Further

investigations and analysis of thresholds while adding temporal requirements in realtime

may provide a choice in parameters that result in detections that better align with

putative ripple events. Overall, the proposed realtime temporal requirement may

raise detection latencies into the 60%−70% range, limiting us to interacting the latter

30%−40% of the event.

Adding in a temporal requirement for online detections and increasing relative

detection latencies leads into a question of the meaning manipulating the latter

percentage of a ripple event. The hippocampus is known to communicate with the

neocortex for memory consolidation resulting in memories being more dependent on

cortical regions than the hippocampus [21,24,25]. As such, it may be possible that the

percentage of the ripple event that has occurred prior to intervention is consistently being

propagated through and we are limited to affecting a certain amount of cognition. This

may potentially explain why goal-related ripple disruption experiments, requiring full

sequential reactivation of particular sequences, have been shown to impair performance

while disruptions during non-sequential tasks (e.g., environmental recognition) tend to

have more limited effects [4, 6, 18–20]. Ultimately, further studies and investigations

into neural content disrupted upon realtime SWR detection compared to the subset of

activity that propagates through to downstream cortical regions are required in order

to understand the effects of disruption and purposes served by SWRs.

5. Conclusion

Altogether, our work investigated the parameter space of ripple detections and

identified the trade-offs between true and false positive percentages along with detection

latency. For any ripple-power based detection system, It appears that a threshold in

the range of 3 to 4.5 standard-deviations above the mean will optimize performance

for most experiments with a rodent inside a sleep box. The choice of single or

multichannel detection will depend on the number of available electrodes and the

extent of the perceived importance of detecting coherent events across large fractions

of the hippocampus. We anticipate that the low latency, realtime, closed-loop, SWR

detection system we implemented in the open-source neural data acquisition software

suite, Trodes may be widely useful, particularly in conjunction with low-cost, open-

source data acquisition units from Open Ephys in enabling the dissemination of this

experimental technique. With our system investigators have the ability to further fine-

tune the threshold to detect desired events observed online while using our analysis

as a guide. Finally, as the number of closed-loop perturbation experiments increases,

we hope that our simulation and validation approach will inspire careful exploration of

parameter and performance metric spaces.
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septotemporal axis of the hippocampus Neuron 75 4107
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